

Below Knee Intervention Its results and how to maximize outcomes in pre-drug-eluting era

G.B. Danzi, MD

Ospedale Maggiore Policlinico Milan - ITALY

Milano Experience (2000-2010)

BTK Endovascular Interventions Milano Experience (2000-2010) Procedural Success

2005 2006 2007 □ Success (%)

Milano Experience (2000-2010)

Mean Age

Milano Experience (2000-2010)

End Stage Renal Disease

Milano Experience (2000-2010)

Mean length of the Single Lesion

Mean Length (mm)

Milano Experience (2000-2010)

Mean length of treated vessels

Mean Length (mm)

Maximize procedural outcome

Maximaze clinical outcome

What is the best BTK-PTA strategy?

- 3-2 vessels better than 1
- Tibials better than peroneal

Direct WRA revascularization (PTA or bypass) better than non-WRA revascularization

Patency of crural arteries and risk of amputation

Crural patent arteries	Patients not requiring amputation (n = 398)	(Patients requiring amputation (n = 22)	No pat ma
3	67		0	No
2	143		0	one
1	179		7 (4)	nat
0	9		15 (62)	am

No patients with 2-3 patent vessels had a major amputation

No patients in whom one tibial artery was patent had a major amputation

Faglia E, Diabetic Medicine 2007;24:823

Patency of crural arteries and risk of amputation

Crural patent arteries	Patients not requiring amputation (n = 398)	Patients requiring amputation (n = 22)
3	67	0
2	143	0
1	179	7 (4)
0	9	15 (62)

In the 7patients with only one patent crural artery who required amputation, the peroneal artery was the only patent vessel

Direct WRA recanalization

The Angiosome Concept

Direct WRA recanalization

Lida O, Catheter Cardiovasc Intervent 2010;75:830

Below Knee Intervention Key issues

- Advanced CTO techniques
 - Sub-intimal approach
 - Trans-collateral approach
 - Retrograde (double) approach
- Treatment of calcified lesions
 - Cutting balloon
 - Rotablator
- Plantar arch recanalization

Peroneal artery PTA, easy, cheap & fast but... is it enough?

- 2-3 vessels better than 1
- Tibials better than peroneal

Direct WRA revascularization better than non-WRA revascularization

- 1. Look always for direct WRA revascularization
- 2. Consider that PTA can be successful in patients in whom distal bypass is not possible

Subintimal approach to posterior tibial artery

- 67 year-old male
- Type II diabetes mellitus
- Hypertensive
- Previous stroke
- Previous PTAs of the right leg
- Ulcer of the plantar aspect of the left foot

The target is the PTA and the plantar arch

Crural and pedal disease causing CLI

To focalize our attention on BTK disease we selected a pure diabetic-BTK population

Baseline angiographic pattern

Diseased vessels in 107 limbs	No.	%
Anterior tibial	103	96
Posterior tibial	104	97
Peroneal	74	69
Pedal artery	51	48
Plantar artery	74	69
0 leg vessel	—	—
1 leg vessel	4	4
2 leg vessels	32	30
3 leg vessels	71	66

7 years FU LIMB SALVAGE

7 years FU SURVIVAL RATE

- In our selected BTK-CLI population a successful PTA led to a high percentage of limb salvage
- Unsuccessful PTA is associated with a very high rate of major amputation and death
- The knowledge of all the available techniques is essential to maximize the procedural success